Multiple Kernel Learning and the SMO Algorithm

نویسندگان

  • S. V. N. Vishwanathan
  • Zhaonan sun
  • Nawanol Ampornpunt
  • Manik Varma
چکیده

Our objective is to train p-norm Multiple Kernel Learning (MKL) and, more generally, linear MKL regularised by the Bregman divergence, using the Sequential Minimal Optimization (SMO) algorithm. The SMO algorithm is simple, easy to implement and adapt, and efficiently scales to large problems. As a result, it has gained widespread acceptance and SVMs are routinely trained using SMO in diverse real world applications. Training using SMO has been a long standing goal in MKL for the very same reasons. Unfortunately, the standard MKL dual is not differentiable, and therefore can not be optimised using SMO style co-ordinate ascent. In this paper, we demonstrate that linear MKL regularised with the p-norm squared, or with certain Bregman divergences, can indeed be trained using SMO. The resulting algorithm retains both simplicity and efficiency and is significantly faster than state-of-the-art specialised p-norm MKL solvers. We show that we can train on a hundred thousand kernels in approximately seven minutes and on fifty thousand points in less than half an hour on a single core.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

Multiple Kernel Support Vector Regression with Higher Norm in Option Pricing

The purpose of present study is to investigate a nonparametric model that improves accuracy of option prices found by previous models. In this study option prices are calculated using multiple kernel Support Vector Regression with different norm values and their results are compared. L1norm multiple kernel learning Support Vector Regression (MKLSVR) has been successfully applied to option price...

متن کامل

Fast Kernel Learning using Sequential Minimal Optimization

While classical kernel-based classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimization of the coefficients of such a combination reduces to a convex optimization problem known as...

متن کامل

Kernel-based transition probability toward similarity measure for semi-supervised learning

For improving the classification performance on the cheap, it is necessary to exploit both labeled and unlabeled samples by applying semi-supervised learning methods, most of which are built upon the pairwise similarities between the samples. While the similarities have so far been formulated in a heuristic manner such as by k-NN, we propose methods to construct similarities from the probabilis...

متن کامل

Using Analytic QP and Sparseness to Speed Training of Support Vector Machines

Training a Support Vector Machine (SVM) requires the solution of a very large quadratic programming (QP) problem. This paper proposes an algorithm for training SVMs: Sequential Minimal Optimization, or SMO. SMO breaks the large QP problem into a series of smallest possible QP problems which are analytically solvable. Thus, SMO does not require a numerical QP library. SMO’s computation time is d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010